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This paper discusses the well-known, but often misunderstood, concept of complex modes
of dynamic structures. It shows how complex modes can be interpreted in terms of wave
propagation phenomena caused by either localized damping or propagation to the
surrounding media. Numerical simulation results are presented for di!erent kinds of
structures exhibiting modal and wave propagation characteristics: straight beams, an
L-shaped beam, and a three-dimensional frame structure. The input/output transfer
relations of these structures are obtained using a spectral formulation known as the spectral
element method (SEM). With this method, it is straightforward to use in"nite elements,
usually known as throw-o! elements, to represent the propagation to in"nity, which is
a possible cause of modal complexity. With the SEM model, the exact dynamic behavior of
structures can be investigated. The mode complexity of these structures is investigated. It is
shown that mode complexity characterizes a behavior that is half-way between purely modal
and purely propagative. A coe$cient for quantifying mode complexity is introduced. The
mode complexity coe$cient consists of the correlation coe$cient between the real and
imaginary parts of the eigenvector, or of the operational de#ection shape (ODS). It is shown
that, far from discontinuities, this coe$cient is zero in the case of pure wave propagation in
which case the plot of the ODS in the complex plane is a perfect circle. In the other extreme
situation, a "nite structure without damping (or with proportional damping), where the
mode shape (or the ODS) is a straight line on the complex plane, has a unitary complexity
coe$cient. For simple beam structures, it is shown that the mode complexity factor can also
be calculated by curve-"tting the mode to an ellipse and computing the ratio of its radii.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In the past few decades, the structural dynamics community has been most oblivious to the
wave propagation approach, which nearly disappeared from undergraduate mechanical
vibrations and structural dynamics textbooks, outmatched by the modal approach. With
the growing interest for higher frequency dynamics and vibroacoustics in recent years, there
is a comeback of the wave propagation approach to vibration analysis. At higher
frequencies, boundary conditions cannot be modelled ideally as simply supported or
clamped. The interaction with the surrounding media, solid or #uid, must be taken into
account.Waves propagating to neighboring structures represent energy dissipation, and the
phenomenon is usually taken into account in modal models via modal damping coe$cients.
Damping caused by wave propagation should be taken into consideration, as it can be an
important source of modal complexity. Another source is non-proportional internal
damping, which represents localized energy dissipation within the structure.
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Modes are due to the superposition of waves re#ecting at the boundaries or at material
and geometric discontinuities of a "nite structure. Real modes result when damping is well
distributed within the structure. For a discrete system, this means that the damping matrix
is a linear combination of the sti!ness and mass matrices or, more generally, that the three
matrices satisfy a well-known algebraic relation [1].
For a linear discrete structure represented by these three matrices, complex modes can be

computed by transforming the second order ordinary algebraic system of equilibrium
equations into a double-sized "rst order algebraic system of equations. Depending upon the
choice of the state-space variables, one non-symmetric or two-symmetric system matrices
are obtained, and an eigenvalue problem may be solved. The eigenvalues and eigenvectors
exhibit the orthogonality property and can be treated as mode shapes. They are, in general,
complex. The question that arises is how to physically interpret those complexmode shapes.
In"nite structures, on the other hand, do not exhibit real-mode shapes, but due to
discontinuities may exhibit local-mode shapes. In"nite structures must be analyzed using
wave propagation or spectral formulations.
Both types of linear structures*"nite and in"nite*when excited by a sinusoidal force

with a certain frequency (many sinusoidal forces at di!erent locations and frequencies can
be treated by superposition), present a stationary vibration pattern at that same frequency.
This is usually known as the operational de#ection shape (ODS). ODS can be de"ned as the
spatial distribution of magnitude and phase of the structure de#ection, at a given frequency.
The ODS can be measured directly by simple means and it can provide very useful
information to understand and evaluate the dynamic behavior of a structure. Operational
de#ection shapes are, in general, complex quantities, even in the case of proportionally
damped structures.
Modal complexity is usually attributed to non-proportional damping. However, it can

also arise from gyroscopic e!ects, aerodynamic e!ects, non-linear structural behavior,
experimental noise e!ects, aliasing, leakage, mass loading, high modal density, and
identi"cation errors [2, 3]. Many other authors have reviewed and investigated complex
mode shapes [4}6]. Oliveto et al. [7] presented a numerical methodology, which is based on
a modal superposition, to evaluate complex modes of a simply supported beam with
a rotational viscous damping. A relation between the real and imaginary parts of a complex
mode is treated by Garvey et al. [8]. In this paper, complex modes generated by wave
propagation through boundaries in in"nite structures are investigated. The wave
propagation analysis is implemented using a spectral element formulation proposed by
Doyle [9]. It is shown that complex modes are somewhere between purely reverberating
standing waves (real-mode pattern) and purely propagating waves (wave propagation
pattern).

2. MODE COMPLEXITY FACTORS

In this investigation, two di!erent factors for measuring mode complexity are introduced.
The "rst one, used here for complicated structures, consists of the correlation coe$cient
between the real and complex parts of a certain mode shape vector. This correlation
coe$cient ��

�
is computed as
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are the real and imaginary parts, respectively, of the rth mode shape vector,

including all the degrees of freedom of the structure. Note that, for real normal-mode
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shapes, ��
�
must have a unit value. On the other hand, ��

�
should theoretically be zero for

pure wave propagation ODS. The second factor, used for simple unidimensional mode
problems, is calculated by curve-"tting the mode to an ellipse in the complex plane, and
estimating its radii. Curve-"tting is carried out using a non-linear least-squares algorithm.
The complexity factor is then calculated as a measure of the breadth of the ellipse as
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where r
�
and r

�
are the minor and the major radii of the ellipse respectively. Observe that for

�
�
"1, the ellipse degenerates to a straight line (pure real mode), and for �

�
"0 it

degenerates to a circle (pure complex mode). It is important to note that this elliptical
behavior of modes can only be observed when dealing with single-wave-type propagation
problems.

3. THE SPECTRAL ELEMENT METHOD

Doyle [9] presented spectrally formulated "nite and semi-in"nite elements for
Timoshenko beams, known as spectral elements. These elements can be used as a tool to
investigate wave propagation in beam-type structures. In contrast to the conventional "nite
elements, this formulation provides solutions which are exact within the framework of the
technical theory used, e.g., Euler}Bernoulli or Timoshenko for beams. It is based on the
exact shape functions and the exact mass distribution within each structural element. This
analysis provides an accurate dynamic characterization of beam-type structures. In general,
a structure is discretized in a small number of spectral elements (one for each span between
two discontinuities) and then these elements are assembled in an analogous way to that of
the FEM. The main di!erence is that the calculations in SEM are all carried out in the
frequency domain. Time-domain responses can be obtained by performing an inverse FFT.
SEM can be seen as a combination of the exact spectral methods and the assembling
features of FEM.
Two di!erent types of beam elements can be used in this method: two-noded and

throw-o!, the latter being a semi-in"nite element. The Timoshenko beam spectral element
obeys the following equations of motion:
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whereGA� is the shear sti!ness, EI is the bending sti!ness, �A and �I are the corresponding
inertia terms, � is a geometrical constant that depends on the shape of the cross-section, and
v is the transverse displacement. Spectral analysis represents the solutions in the form

u(x, t)"�uL e�i�������, (4)
where k is the wave number.
For the beam waveguide obeying the Timoshenko beam theory, the equation of motion

will have a four-coe$cient exact solution given as
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where R
�
and R

�
are de"ned as the amplitude ratios and k

�
, k

�
are the wave numbers
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with the constants c
�
,�GA�/(�A), c

�
,�EI/(�A), and c

�
,��I/(�A).

For throw-o! elements, the equations of motion can easily be established from equations
(5) by putting C"D"0, as waves propagate in only one direction. The solution to these
equations can be written in terms of the nodal displacements and a relation between the
global shear forces and moments and the global nodal degrees of freedom can be established
as

[KK g] �uL g	"�FK g	, (7)

where KK g is the global dynamic sti!ness matrix, which is symmetric and generally has
complex elements. The individual elements of this matrix can be found in Doyle [9].
When frame structures are analyzed in three-dimensional space, longitudinal and

torsional waves also propagate. To model these kinds of waves, spectral rod and shaft
elements must be used. The spectral solution for the rod equation of motion is of the type

uL (x)"Ae�i���#Be�i�������, (8)

with k
�
"���/E. The throw-o! element is again obtained by putting B"0. The torsional

spectral element has the same solution except that k
�
is exchanged for k

	
"���/G .

The fact that only one element is needed between any two discontinuities in SEM plays
the role of making the number of elements relatively very small when compared to the "nite
element method. The solution is exactly independently of the element length within the
frequency range where the Timoshenko beam theory is valid. Thus, the response at di!erent
nodal degrees of freedom can be recovered with less computational cost even when solving
this system of equations at each frequency component.

4. CASE STUDY 1: FINITE AND INFINITE BEAMS

In order to illustrate the behavior of "nite and in"nite systems, four simple beam
structures were modelled using SEM, see Figure 1. All beams have the following properties:
Young's modulus E"1)9�10�� N/m�, the Poisson ratio 
"0)3, mass density
�"7800 kg/m�, a rectangular cross-section area 0)01915�0)0031 m�, and an internal loss
factor �"0. All beams are forced to vibrate by a sinusoidal point force F. The simulated
FRFs and ODSs were evaluated with a 0)01 m spatial resolution along a 0)5m span.
To investigate the concept of normal modes and stationary waves, the example in

Figure 1(a) is used. In this case, the energy propagating through the beam is trapped
between the end boundaries. The waves reach the boundaries and rebound. Bouncing back
and forth, these waves form a spatially stationary standing-wave pattern where any point
on the wave form does not propagate but rather oscillates around a "xed point in space.
When vibrating freely, these patterns are linear combinations of the normal modes.
When forced to vibrate by a sinusoidal point force, the response of the beam, in terms of

magnitude and phase relative to the excitation force as a function of the excitation
frequency, is the frequency response function (FRF). The spatial pattern of each FRF
frequency line is an ODS. When damping is small and modes are well separated in
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Figure 1. Simple beam structure examples: (a) clamped}free; (b) semi-in"nite; (c) semi-in"nite with discontinuity,
and (d) in"nite.
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Figure 2. FRF of the clamped}free beam of Figure 1(a).
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frequency, the ODS near each natural frequency is very similar to the corresponding mode
shape. Figure 2 shows the FRF for the clamped}free beam of Figure 1(a) plotted with
a resolution of 0)5 Hz.
In this case, the standing waves pattern for the ODS near the "rst natural frequency,

which is approximately the "rst normal mode, is plotted in Figure 3.
In order to calculate the mode complexity factor, the modal parameters were identi"ed

from the simulated FRFs. The identi"cation was performed using Chebychev orthogonal
polynomial method described in reference [10]. Themode shape in this case is real. This can
clearly be seen when plotting this mode in the complex plane, Figure 4. The correlation
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Figure 3. Standing-wave behavior of the ODS of the clamped}free beam at 9)89 Hz.
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Figure 4. First normal mode of the clamped}free beam in the complex plane.
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coe$cient ��
�
(complexity factor) in this case is approximately equal to 1. On the other hand,

the other factor �
�
is also equal to 1 as the minor radius r

�
"0.

In the second example structure, the semi-in"nite beam, instead of standing waves, there
is a propagating wave pattern. Energy is no longer trapped within the structure but instead
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Figure 5. Frequency response of the semi-in"nite beam.
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Figure 6. Propagating wave pattern of the semi-in"nite beam. ODS at 173 Hz.
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it travels towards the in"nite end. In this case, no modes are built up and only the ODS can
be excited. The frequency response calculated at a point along the beam is shown in
Figure 5. Observe that in this case, the FRF does not show any resonance peak and the
FRF magnitude decays exponentially with frequency.
In this case, the ODS, can be obtained using the responses computed via SEM at all

points in the analyzed frequency. The propagating wave pattern can be observed from the
plot in Figure 6.
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Figure 7. Normalized amplitude and phase plots of the ODS at 173 Hz: (a) clamped}free beam, and (b)
semi-in"nite beam.

670 K. M. AHMIDA AND J. R. F. ARRUDA
This propagation phenomenon can also be observed in the phase plot of the ODS in
Figure 7(b). Note that the phase angles change linearly indicating the axial motion of the
#exural waves along the beam. Figure 7(a) shows the corresponding plot for the
clamped}free beam for comparison. The operational mode of the semi-in"nite beam is
complex, as shown in Figure 8, with a complexity factor �� of 0)0115. Observe that the plot
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Figure 8. ODS of the semi-in"nite beam at 173 Hz in the complex plane.
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Figure 9. FRF of the semi-in"nite beam with discontinuity of Figure 1(c).
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of this ODS in the complex plane is not a perfect circle due to the discontinuity represented
by the point force at the beam end. The �

�
factor, when calculated at points far from the

excitation location, would result in a value of zero, which corresponds to a perfect circle. It
should be noted that, in the Nyquist plots, the aspect ratio is set in such a way so that the
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Figure 10. ODS at 176)4 Hz (close to second mode) of the semi-in"nite beam with discontinuity: (a) Nyquist
plot; (b) vibration pattern; (c) normalized amplitude and phase plots.
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tick mark increments, on the x- and y-axis, are equal in size. This makes a circle look exactly
like a circle, instead of an ellipse. This is true for all Nyquist plots shown in this
paper.
A real structure usually has a combination of the two previously discussed wave types,

standing and propagating. One of these cases is when discontinuity is imposed on a straight
in"nite beam, as the one in Figure 1(c). This discontinuity can be manifested in the form of
a massy joint, a localized sti!ness element, or two collinearlly coupled beams of di!erent
material properties or cross-sections. In the example given here, a lumped mass of 0)1 kg
and a linear spring of 1000 N/m sti!ness were introduced at a length of 0)5 m from the free
end. The in"nite length is again represented mathematically by a throw-o! spectral element.
In this case, the incident #exural waves will travel dispersively along the beam, reach the
discontinuity and partly rebound back and partly propagate to in"nity. To illustrate the
damping e!ect, the frequency response calculated at the excitation location is shown in
Figure 9 (compare with Figure 2).
This structure can be thought of as a beam with one end plunged into a sand box. The

second mode shape, of frequency 176)4 Hz, identi"ed using the same modal parameter



0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Driving frequency, Hz

(a) 

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

, β
2

(b) 
C

or
re

la
tio

n 
C

oe
ff

ic
ie

nt
,  

β2

1000900400 500 600 700 800100 200 300
Driving frequency, Hz

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

, β
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

, β
2

(c) (d) 

Driving frequency, Hz
0 100 200 300 400 500 600 700 800 900 1000

Driving frequency, Hz
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extraction method, is shown in Figure 10(a). The elliptic shape of the mode plotted in the
complex plane (only the "nite part of the beam displayed) reveals the complex character of
the mode.
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Due to the discontinuity, represented by the massy joint and the localized sti!ness
elements, the waves in the in"nite part propagate with lower, but constant, amplitudes when
compared to the ones in the "nite part. This can clearly be observed from the waterfall plot
of the ODS at 176)4 Hz, Figure 10(b).
Figure 10(c) shows the phase plot of this ODS. The propagating-wave character is clear

past the discontinuity, in the in"nite section of the beam.
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The mode complexity factor ��
�
was calculated for the whole frequency range for the three

beam structures of Figure 1(a}c). The resulting plots are shown in Figure 11(a}c). For the
"nite clamped}free beam, ��

�
has a unity value near the peaks of the FRF, where mode

shapes are dominant. On the other hand, the semi-in"nite beam only presents values close
to zero, as no modes exist but rather, propagating waves.
For the model of the beam with discontinuity (Figure 11(c)), the real or the imaginary part

of an ODS passes through the x- or the y-axis at some frequency lines, causing a numerical
singularity in the calculation of the ��

�
factor. This is speci"cally analyzed in the frequency

range where a resonance of, for example, 557)7 Hz lies. The behavior of this resonance in the
complex plot, demonstrated only for the "nite part of the structure, is shown in Figure 12(a).
The correlation coe$cient is also calculated through the expression of equation (9), where
this coe$cient varies from!1 to 1, in contrast to the ��

�
factor, which is always a positive

quantity. Figure 12(b) shows the calculated �
�
factor,
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Figure 18. Nyquist plot of ODS at 474)5 Hz: (a) longitudinal waves in beam 1, (b) #exural waves in beam 1,
(c) longitudinal waves in beam 2, and (d) #exural waves in beam 2.
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The notches appearing in Figure 11(c) are due to the crossing of the zero plane causing
the singularity in the calculation of the correlation coe$cient. In this case, a better option is
to estimate the radii of the ellipse and calculate the �

�
factor. At the frequency of 176)4 Hz of

the analyzed mode, the �
�
factor is equal to 0)91658.

Finally, an in"nite beam excited by a point force shown in Figure 1(d) was investigated.
One might think that in this case the complex plot of the ODS would be a perfect circle with
zero complexity coe$cient. Indeed, this is the result for beam spans far from the excitation
location. The point force itself is a discontinuity and, because of it, the circle is distorted in
the vicinity of this location. This can be observed in Figure 13(a) which shows the ODS at
1 kHz. Far from the excitation location (x"0), the ODS is a perfect circle. Figure 13(b) shows
a waterfall plot of this ODS, where the propagating-wave behavior is clearly observed.
The plot of the complexity coe$cient for the in"nite beam in the investigated frequency

range is shown in Figure 11(d). Figure 13(c) shows the in"nite beam ODS phase plot at
1 kHz. The propagating-wave character is clear.

5. CASE STUDY 2: L-SHAPED BEAM

The second case study is an L-type beam which has the same material and cross-section
properties used in case study 1. The "nite part of the structure, beam 1, has a length of
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¸"5 m, while beam 2 is in"nite. A length of 10 m is used to show the behavior of beam 2.
The structure is forced to vibrate by a point force F applied transversally at the free end of
beam 1 (Figure 14). A frequency range of 1}500 Hz with 0)5 Hz resolution is used. In this
case, two kinds of waves are generated: longitudinal and #exural. The numerical simulation
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is conducted using the SEM. Only two elements are used: one is two-noded and one is
throw-o!. The simulated FRFs and ODSs were evaluated with a 0)05 m spatial resolution
along both beams. The frequency response calculated at the excitation point is shown in
Figure 15.
The ODS near the third resonance (5)5 Hz) is calculated and shown as a waterfall plot in

Figure 16. Note the propagation character in beam 2 and the stationary-dominated wave
character in beam 1.
This ODS is characterized by local modes in beam 1. The operational mode of the

semi-in"nite beam is complex as it involves a wave propagation phenomenon. This can be
observed from the complex plane plot of this ODS shown in Figure 17(a}d).
It can be noticed that the transverse waves at this frequency are more signi"cant than the

longitudinal ones. This can be related to the direction of the excitation force used, which is
transverse on beam 1. On the other hand, the elliptic shape of the transverse-wave ODS
demonstrates the complex character of the ODS. The Nyquist plot of the longitudinal-wave
ODS in beam 2, shown in Figure 17(c), may be misleading. In fact, what is plotted is
a segment of a circle, because the longitudinal wavelength at this frequency is 898)1m, and
only a 10 m span is plotted. The mode complexity factor �� of all d.o.f.s for this ODS is
0)28797, which indicates a strong modal complexity. To investigate the mode complexity at
higher frequencies, another ODS at a resonance frequency of 474)5 Hz is investigated. In
this case, beam 2 characterizes a pure wave propagation character. The longitudinal
wavelength is 10)4 m and the #exural wavelength is 0)242 m. Therefore, the span of 10 m is
su$cient to show the full circle in the Nyquist plot. The mode complexity factor �� of all
d.o.f.s is 0)03578. The modal complexity of this ODS can clearly be observed from Figure
18(a}d).
From these "gures, the stationary longitudinal wave pattern in beam 1 is clear. The
#exural waves have a purely propagative character in beam 2 and a complex modal



Figure 22. Twelve instant de#ections in a vibration cycle of the ODS at 2)98 Hz.
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behavior in beam 1. On the other hand, longitudinal waves transmitted to beam 2 propagate
to the in"nite end. This is clearly characterized by the perfect circle of the ODS
demonstrated in Figure 18(c, d).
The modal complexity factor ��

�
, calculated for all frequency components, is shown in

Figure 19. Note that the factor ��
�
exhibits small values at the resonance frequencies. Again,

at resonance the ODS will change phase over a 1803 span and at some point it becomes
almost purely imaginary causing singularity of the complexity coe$cient, as shown back in
Figure 12.
Note here that the complexity factor ��

�
has to be used if the ODS, with all d.o.f.s included,

is to be analyzed. The other factor �
�
would only be useful if longitudinal or transverse wave

types are to be analyzed separately. The conjunction of all wave types would result in
a mixture of lines and ellipses and could not be curve-"tted to one ellipse only.

6. CASE STUDY 3: THREE-DIMENSIONAL FRAME STRUCTURE

A three-dimensional truss-type structure is also investigated. All three kinds of
propagating waves in beam, longitudinal, transverse and torsional, are present. The
structure is made up of 20 straight steel beams, each with a length of ¸"5 m. Four of these
beams are modelled as throw-o! elements, where a mass of 1 kg and localized sti!ness
elements of 10� N/m are added at their nodes. The material and geometry properties are



Figure 23. Nyquist plot of the three wave types at 2)98 Hz: (a) longitudinal waves, (b) #exural waves in both
planes, and (c) torsional waves.
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E"2)1�10��N/m�, �"7800 kg/m�, A"0)05�0)05 m�, 
"0)30. This type of structure
can be thought of as a model to investigate the vibration of real large truss-type structures,
which have their bases plunged into the soil. A sinusoidal point force F is applied to the
structure as shown in Figure 20.
A frequency range of 1}50 Hz, with a 0)5 Hz resolution is investigated. The frequency

response calculated at the three translation d.o.f.s of the excitation point is shown in
Figure 21. The ODSs are evaluated with a spatial resolution of 0)05 m.
A low-frequency resonance of 2)98 Hz is "rst analyzed. This ODS is characterized by

de#ections de"ned in the "nite members only. Figure 22 shows 12 instant de#ections in
a vibration cycle of the ODS. The four in"nite members have the function of dissipating
energy, but exhibit nearly no de#ections. This is related to the use of the massy joints and
localized sti!ness elements, which will decrease the vibrational energy transmitted to the
in"nite members.
The complexity factor �� for this ODS, calculated for the "nite members only, is equal to

0)9963, indicating a real-mode character. This ODS is also shown in the complex plane in
Figure 23(a}c) for the three wave types in all "nite members. The straight line characterizes
the real-mode pattern.
At higher frequency, e.g., the ODS near the resonance of 33)17 Hz, the wave propagation

phenomenon can be clearly observed in Figure 24. This ODS is complex, with a modal
complexity factor �� (calculated for the "nite members only) of 0)5576.



Figure 24. Twelve instant de#ections in a vibration cycle of the ODS at 33)17 Hz.
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The fact that this mode exhibits a wave propagation pattern can clearly be seen from the
complex-plane plot in the three directions (see Figure 25(a}c)).

7. CONCLUDING REMARKS

The main purpose of this work was to present the spectral element method (SEM) as
a useful tool in helping to bring back the wave propagation approach to structural dynamic
analysis. With the SEM, it is straightforward to model in"nite systems and damping caused
by wave propagation, which is present in many practical applications. Real structures are
not isolated from the neighboring media. Usual boundary conditions such as simple
supports and clamps are not realistic in many situations. With the SEM throw-o! element,
energy dissipation by energy propagation through boundaries can be easily investigated.
Also, because the SEM is formulated in the frequency domain, it allows the direct use of
experimental impedance measured at the boundaries. How SEM models can be used to
investigate and teach modal analysis concepts using exact numerical simulations has been
shown (within the context of the adopted beam theory), which would be awkward to do
using "nite elements.
The aim of the paper is to clarify the ideas about normal and complex modes and show

how they can be related to wave propagation phenomena.Modal complexity factors for the
quanti"cation of mode complexity have been proposed. Quanti"cation of modal
complexity is important in processes of modal testing and model correlation. In general,
there seems to be no simple coe$cient for the quanti"cation of mode complexity. The



Figure 25. Nyquist plot of the three wave types at 33)17 Hz: (a) longitudinal waves; (b) #exural waves in both
planes, and (c) torsional waves.
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common procedure is to plot the mode shape or ODS as vectors in the complex plane. The
pure real modes are those forming a straight line, and the pure complex modes are those
forming a perfect circle. Modes in between have an elliptical shape. Vibration modes of
simple structures described by only one type of wave propagation have a well-described
distribution when plotted in the complex plane, usually forming an elliptical shape. Mode
complexity quanti"cation can be conducted by curve-"tting it to an ellipse, using non-linear
least-squares algorithm, and "nding the minor and major radii of the ellipse. The breadth of
the ellipse could be the measure of mode complexity. Mode complexity of complicated
structures, consisting of discontinuities and more wave-type propagation, can be conducted
either by analyzing each wave-type alone or through the correlation coe$cient between the
real and complex parts of the mode. It has been shown that the correlation coe$cient is zero
in the case of pure wave propagation, far from discontinuities. In the other extreme
situation, a "nite structure without damping (or with proportional damping) has
a complexity coe$cient of one.
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